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SHOCK CAPTURING BY
THE SPECTRAL VISCOSITY METHOD 1

Eitan Tadmor

School of Mathematical Science, Tel-Aviv University

and

Institute for Computer Applications in Science and Engineering

ABSTRACT

A main disadvantage of using spectral methods for nonlinear conservation laws lies in

the formation of Gibbs phenomenon, once spontaneous shock discontinuities appear in the

solution. The global nature of spectral methods then pollutes the unstable Gibbs oscillations

overall the computational domain, and the lack of entropy dissipation prevents convergences

in these cases.

In this paper s we discuss the Spectral Viscosity method, which is based on high frequency-

dependent vanishing viscosity regularization of the classical spectral methods. We show that

this method enforces the convergence of nonlinear spectral approximations without sacrificing

their overall spectral accuracy.
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1. INTRODUCTION

We consider the 27r-periodic one-dimensional system of conservation laws

(1.1a) Ouo__.t"+ Of(u)&c - 0,

with prescribed initial conditions, u(x,t = 0) = u0(m). We recall, [4], that solutions of (1.1a)

may develop spontaneous jump discontinuities (shock waves) and hence the class of weak

solutions must be admitted. Moreover, since there are many possible weak solutions, the

system (1.1a) is augmented with an entropy condition which requires

(1.1b) OU(u) OF(u) < O.o--T-+ o--7--

Here, U(u) and F(u) =__f= < V'(w), f'(w)dw > is any entropy function and the correspond-

ing entropy flux pair associated with (1.1a), so that a strict inequality in (1.1b) reflects the

existence of physically relevant shock waves in the entropy solution of (1.1a), (1.1b).

We want to solve the 27r-periodic initial-value problem, (1.1a), (1.1b), by (pseudo-) spec-

tral methods. To this end, we use an N-trigonometric polynomial

N

_N(_,t)= _ e_(t)e'_',
k=-N

in order to approximate the spectral or edospectral projection of the exact solution, u(x, t).

Let SNu and eNU denote, respectively, the spectral-Fourier and the ¢dospectral-Fourier

projections of u(x, t), and let Plvu stands for either one of these two projections. Then,

starting with uN(x, 0) = PNuo(x), the standard Fourier method, [1], lets uN(x,t) evolves at

a later time according to the (2N + 1)-dimensional approximate model

(1.2) _/[_] + [p_f(_)] = 0.

We can rewrite this approximation in the equivalent form

(1.3)

The expression inside the right brackets is the local error (due to spatial discretization). The

approximation (1.2)- or equivalently (1.3), is consistent with the conservation law (1.1) in

the sense that its local error does not exceed

(1.4) [IEuN -- (I- P_r)y(uN)ll < Consta . NII_,NIIH,.

In fact, the usual spectral estimates, [10], tell us that the approximation (1.2) is arbitrarily

high-order (or spectrally) accurate approximation of the conservation law (1.1a). Namely,

for any s > 1 there exists a constant, Const,, such that

(1.5) llEuNII_ Co_t,. N-'II_NII_,.



The SV method was introduced in [11] where compensated compactness arguments were

used to show convergence in the special case of the scalar Burgers' equation. The conver-

gence proof of the SV method was then extended in [5], [9], [12], to include general scalar and

certain 2 x 2 systems of conservation laws. In the next sections, we outline the practical con-

siderations involved in the implementation of the SV method, and we give a bird's eye view

of the above mentioned convergence results. Finally, we provide numerical evidence which

shows how post-processing of the SV solutions enables to recover with spectral accuracy the

pointwise values of the exact entropy solution.

3. CONVERGENCE OF THE SV METHOD

The modified equation associated with the SV method (2.2) takes the form

(3.ia) + =_[UN] O _----_[EuN].

The local error in this case, EUN, consists of two contributions: the discretization error we

had before in (1.3), and the additional viscosity error introduced on the right of (2.2), i.e.,

OuN

(3.1b) EuN = (I- P_)f(uN) + eNQN * c3----_"

Integrating (3.1) against u_v over the 21r-period we obtain

1 d 2,, .cguN
(3.2) f0 =

Thus, the quantity on the right represents the amount of (quadratic) entropy dissipation

rate. The counterexample discussed in Section 1 tells us that the control of such quantity is

necessary for convergence. This brings us to

DEFINITION. [12, Section 3]. The approximation (3.1a) is consistent with the entropy

condition, if there exist constants, Const. > 0 and e_r _ 0 such that

(3.3)
. OuN VOuN 2 1

-(--ff_-x,EuN) <_ -C'on  . NII-E II + II, NIt >

Using compensated compactness arguments, the main results of [12, Section 6] asserts

that this kind of consistency together with L°C-stability imply convergence. We shall use

this framework to prove the convergence of the SV method.

The special form of the local error, EuN, in (3.1b) reveals that the entropy consistency

requirement (3.3) is fulfilled, if a sufficiently large amount of SV regularization, eNQN, is

present. Indeed, taking into account the a'priori estimate (1.4) and using Parseval's relation,

we conclude that entropy consistency is achieved with SV kernels satisfying,

^

(3.4) Qk(_) >_ Const.
eNk2"
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Can weusesucha viscosity kernelswithout sacrificingspectralaccuracy?usinga vanishing
viscosity amplitude of order, say, eN_ > _, we find by (3.4), that the viscosity coefficients,

Qk(t), should be activated only for high modes with wavenumbers Ik] >_ mN, where

(3.5a) mu "' N _,

The resulting SV method then takes the form

(3.5b) -_[uu] + [Plvf(uN)] = -_

1
t3<-.

2

k Ok(t) k(t) 
mN<lkl<N

It differs from the standard Fourier method (1.2) by the spectrally small amount of viscosity

added on the right of (3.5b). Indeed, the contribution of this kind of viscosity to the local

error in (3.1b), does not exceed

" 0UN

II NQN* -g;-xII_<Coast,. ra 'll ll-,,

which retains the (formal) overall spectral accuracy of the Fourier method

(3.6) ]IEuNII <Const,. N-;_'IIUNIIH,.

Thus, by augmenting the Fourier method with a spectrally small amount of viscosity, we

are able to enforce a sufficient amount of entropy dissipation so that the entropy consistency

requirement (3.3) is met. Moreover, in the next section we show that this kind of spectral

viscosity guarantees that our approximation, UN(X, t), remains uniformly bounded

(3.7) [lUN(X,t)IIL_ < M(t).

Consequently, the (entropy) consistency and L_-stability imply that the SV method con-

verges for a wide class of scalar conservation laws as well as certain 2 x 2 conservative systems,

[91, [12].

4. DECAY AND CONVERGENCE RATES

In order to gain a better insight into the role of spectral viscosity, it is instructive to

study the decay rate of the Fourier coefficients, ilk(t) and h(t) =- h(UN(t)). This program

was carried out in [5] for the special case of Burgers' equation, and in [9] for the general

scalar problem. An iterative argument outlined in [5], [9], shows that the presence of SV

separates the computed spectrum into three different regions.

1. Wavenumbers in the "inviscid" region [k] < m/v. The corresponding amplitudes, ilk(t)

and ]k(t) are then governed by the underlying nonlinear conservation law.

2. Wavenumbers outside the "inviscid" region, mN _ Ikl < N. Here we find that due to

nonlinear interaction with the spectral viscosity, the corresponding amplitude dissipate

at rate

(4.1a) [fik(t)l + Ifk(t)l_ Const, . _ + e -N,, ran < Ikl < N.

In particular, we have here a transition to a third distinctive region, namely



3. Wavenumberslocated at the highest portion of the spectrum, say ½N _<[k[ _<N.

Then, by (4.1a), the corresponding amplitudes are negligibly small, i.e., with vanishing

viscosity amplitude of order eN_N -2_, we have

(4.1b) IN < Ikl< N.[?_k(_)[-_-[h(t)[_(Co?-_8t,•N-(1-2_)8+ e-Nt, # < 1, 2 - -

We conclude that the presence of spectral viscosity enforces a spectral decay of the
discretization error

1

(4.2) I1(I- P_r)/('_N)II < o_sto •N -0-2¢_)° + e -Nt, ,8 < 2"

We observe that the spectral decay of the discretization error is valid independently whether

the underlying solution is smooth or not, [5, Section 3], [9, Section 3]. This shows that the

SV solution is essentially governed by the equation

(4.3)
* Ox"

This equation is closely related to the standard viscous regularlzation (2.1). We note, how-

ever, that unlike (2.1), the viscosity regularization in (4.3) is nonlocal due to the finite

support of the convoluted kernel Q_v(x, t).

One can use now the viscous equation (4.3) in order to obtain a uniform bound on the

SV solution. Integrated against pu_v-l(m,t) over the 2_r- period, equation (4.3) yields

(4.4) d _ _NII_[I 0_Ndt [[UN[[Cp<- - Q_]-_-IIL,.

Standard trigonometric estimates can be used to upper bound the RHS of (4.4),

(4.5)

Indeed, the inequality (4.5) is just an LP-version of the entropy consistency estimate stated

in (3.3), consult [12, Section 5]. Hence, by combining (4.4), (4.5) and carefully iterating on

the/2'-norms of u_v(x, t), we derive the L_°-bound of u_v(x, t) promised earlier.

Furthermore, Schochet [9] used the viscous equation (4.3) in order to conclude an almost

optimal Ll-convergence rate of the SV method, namely

1

(4.6) I1_ - _lt_,_ Co_st.N-_, _ < 5"

Figures 4.1 and 4.2 compare the behavior of the spectral-Fourier method with and without

spectral viscosity in the case of Burgers' equation, which is subject to initial condition,
u0(m) = sin x. The resulting ODE system for the Fourier coefficients

(4.7) da,_(t) 1
p+q=k
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wasintegratedup to time _= 1.5,usingthe fourth-order Runge-Kutta method. The method

was complemented with viscosity coefficients Qk - 1 only for wavenumbers ]k[ >_ rnN where

mN ,'_ 2N½. Figure 4.1 shows that the SV solution convergence strongly (but not uniformly)

to the exact entropy solution, in sharp contrast to the oscillatory behavior of the viscosity-

free Fourier method in Figure 4.2. Improved results were obtained in Figure 4.3, by using

C _ viscosity coefficients, (_k, connecting wavenumbers in the inviscid region, [k[ < rnN,

and the highest wavenumbers, ]k[ _ N. This kind of smoothly varying SV prevents the

propagation of the Gibbs phenomenon into the whole computational domain that can be

noticed in Figure 4.2, consult [11]. Moreover, Figure 4.4 shows this SV solution after it

was post-processed by the spectrally accurate smoothing procedure discussed in [2]. Finally,

in Table 4.5, we quote from [6], the pointwise errors of the post-processed SV solution for

the Burgers' equation. The results indicate the spectral convergence rate obtained by the

post-processed SV solution in the shock-free zones of the entropy solution.
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Figure 4.1. The SV method for Burgers'

equation.

8

ZPLC o kAL.

p_* laL
*. '

|

qi ql .! _O • "0

I I

it o°

|I B I i g|QI

Ii|I |I

g gg

I
0

e B

o ql

Figure 4.2. The spectral Fourier method

for Burgers' equation.
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The pseudo-SV method with smooth viscosity kernel before and after post-processing.



X

.314

.628

.942

1.25

1.57

1.88

2.19

2.51

N= 16 N-32

5.7.10 -3 2.3- 10 -4

3.9.10 -3 2.8.10 -4

7.2.10 -s 2.7.10 -4

1.2.10 -2 2.8.10 -4

1.4.10 .--2

1.7- 10-2

2.0.10 -2

2.1 • 10 -2

2.8. 10 -4

3.0.10 -4

3.6.10 -4

4.3- 10 -4

Table 4.5

Pointwlse errors Of the post-processed pseudo-SV approximation compared with the exact

entropy solution of Burgers' equation.
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